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OBJECTIVE 

The purpose of this study is to compare and contrast the sedimentation rates and 

the sediment distribution pattern in some selected Iowa lakes. The lakes that were chosen 

for this study are Pine Lake in Hardin County, Union Grove Lake in Tama County and 

Black Hawk Lake in Sac County. Pine Lake and Union Grove Lake are river dammed 

lakes while Black Hawk Lake has a glacial origin. 

Empirical methods proposed to compute the amount of sedimentation and some of 

the proposed analytical models for sediment distribution have been reviewed. 

Finally a novel approach to estimate the amount of sedimentation in lakes based 

on limited field data has been proposed and has been applied to the lakes under study. 
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CHAPTER 1: INTRODUCTION 

1.1: Statement of the Problem 

Construction of a dam across a stream alters its natural equilibrium by changing 

the characteristics of its discharge and the sediment transport capability. On coming in 

contact with the virtually stagnant water in a reservoir, the inflowing water velocity 

decreases thereby causing deposition of sediments. Reservoirs formed by constructing a 

dam across a flowing stream will, to some degree, be subjected to sedimentation. 

Reservoirs are constructed for purposes which include among other things: water 

supply, irrigation water, hydropower, flood prevention and recreation. Reservoir 

sedimentation may seriously affect the purpose for which the reservoir was constructed; it 

is therefore necessary to estimate the rate of sedimentation and the useful life of the 

reservoir. 

Problems associated with sedimentation of reservoirs include one or more of the 

following: 

• Aggradation of upstream flood channels which may cause an increased frequency of 

flooding 

• Increased costs associated with dredging of reservoirs 

• Loss in the recreational value of the reservoir 
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The sediment distribution pattern in a reservoir affects decisions regarding the 

placement of sluices in dam walls and estimation of excess pressure on the dam due to 

the deposited sediments. Thus in addition to predicting the amount of sedimentation, it is 

also desirable to predict the spatial distribution of sediments in a reservoir. Although this 

research study does not aim at predicting the spatial distribution of sediments, some of 

the proposed mathematical models for spatial distribution to have been reviewed in 

Chapter 2 of the thesis. 

1.2: Approach to the problem 

One approach for engineers to estimate the amount of sedimentation in a reservoir 

is to use the Universal Soil Loss Equation, sediment delivery ratios, and trap efficiency 

curves. This approach is considered in detail in Chapter 2 of the thesis. Alternatively, 

the amount of sedimentation can be calculated by conducting sedimentation analysis of the 

lake using lake bathymetric maps from previous surveys or by probing sediment 

thicknesses. Future sedimentation rates can then be estimated from these historical data. 

Sedimentation analysis of the three lakes under study was conducted using SURFER, a 

computer software package. 

It was determined that the lakes under study had characteristic normalized 

elevation vs normalized volume (NENV) curves. Normalization is a process wherein the 

variables, in this case the elevation and the volume, are represented as a percentage 
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(ranging from 0% to 100%) of the maximum value of the variable. The NENV curves 

were used to propose a model (NENV model) to estimate the sedimentation in reservoirs 

without actually having to conduct extensive reservoir surveys. This approach is 

described in detail in Chapter 5 of the thesis. 
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CHAPTER 2: LITERATURE REVIEW 

2.1: Introduction 

Sedimentation analysis of a reservoir involves calculating the amount of sediments 

deposited in the reservoir. This can be achieved by using empirical relationships or 

conducting actual reservoir bottom surveys. Extensive reservoir survey is not quite 

feasible for very large reservoirs and in these cases empirical relationships are used to 

estimate the amount of sedimentation. These empirical relationships have been reviewed 

in the following sections. Also, some mathematical models proposed to explain the 

spatial distribution of sediments in reservoirs have been reviewed. 

Sedimentation analysis of a reservoir essentially involves two components: 

• Estimation of the amount, either on weight or volume basis, of sediments entrapped in 

the reservoir, and 

• Spatial distribution of the deposited sediments within the reservoir 

Estimating the amount of sedimentation basically consists of the following two 

parts: 

• Estimate of the sediment inflow into the reservoir, and 

• Estimate the amount of sediment that is actually retained by the reservoir 
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2.2: Sediment inflow estimation 

Nearly all of the sediment transported to a reservoir by inflowing streams owes its 

existence to sheet and rill erosion of the soils on the watershed. Only a fraction of the 

total erosion is due to gully and stream channel erosion. Horton (1941) estimates that 

about 99% of the total erosion in the evolution of a drainage basin takes place by sheet 

and rill erosion on the watershed. Watershed characteristics which influence the volume 

of inflowing sediments are discussed in Chapter 3 of this thesis. 

The gross erosion on a watershed is influenced by various inter-related factors. 

These factors include (Laronne and Mosley, 1982): 

• relief of the watershed 

• length of the slope 

• climate 

• conservation practices employed 

• soil type 

Schumm and Hadley (1961), as quoted in Schumm (1963), state that the sediment 

yield rates are an exponential function of the relief-length ratio of the watershed. This is 

as shown in Figure 2-1. It should be noted that the figure is plotted on a semi- 

logarithmic scale. 
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Figure 2-1: Relationship of sediment yield rates to relief-length ratio (Schumm, 1963) 
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The soils that are eroded are transported by the river/stream to the reservoir either 

as bed load or in suspension, depending on the particle size of the sediments. The 

amount of the eroded sediments that actually find their way to the reservoir can be 

estimated using any of the following approaches: 

Sediment delivery ratio method 

The percentage of sediment delivered from the erosion source to any specified 

downslope location is affected by such factors as the size and texture of erodible material, 

climate, land use, local environment, and general physiographic position (Vanoni,1975). 

The sediment delivery ratio (D), may be defined as the ratio of the sediment yield at the 

measuring point (Y), to the total material eroded from the watershed and the drainage 

system upstream from the measuring point (T). 

D = Y/T 

Usually, the sediment delivery ratio decreases with increasing drainage area in a 

basin that is relatively homogeneous with respect to soils, climate, and topography, but 

large downstream increases in erosional rates in a nonhomogeneous basin can increase the 

delivery ratio. Sediment delivery ratios can be developed from sediment yields obtained 

from reservoir surveys or by measurements at suspended load stations in comparison with 
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erosion on the watershed (Taylor, 1970; Vanoni, 1975). Gottschalk and Brune (1950), as 

quoted in Vanoni (1975), have developed relationships for loess hills of Iowa and 

Nebraska and these are summarized in Figure 2-2. 

The gross erosion on the watershed (T), is determined using the Universal Soil 

Loss Equation. The Universal Equation estimates the annual soil loss of a watershed (A) 

by taking into account numerous factors (Taylor, 1970). These include: 

• rainfall factor (R) 

• soil erodability factor (K) 

• slope length (L) and slope steepness factors (S) 

• cropping management factor (C) 

• supporting conservation practice factor (P) 

Then, 

A = RKLSCP 

The predicted annual soil loss has units used for K, the soil erodability factor, 

usually tons/acre. The other factors are dimensionless (Toy, 1977). 

Sediment transport relationships 

Various empirical and theoretical sediment transport models have been proposed 

by various researchers to explain the sediment transport phenomena in streams. These 

relationships are used to calculate the rate and quantity of sediment movement, and thus 
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Figure 2-2: Relationship of sediment delivery ratio and drainage area (Gottschalk and 

Brune, 1950; From: Vanoni,1975) 
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the inflowing sediment rate to the reservoir. The most commonly used sediment 

transport theory is the Einstein’s bedload function, with one of its many modifications 

(Lopez, 1978). 

Sediment yield rate curves 

It is possible to predict the sediment yield of a watershed by comparing it with 

other watersheds having similar climatic, topographical and geologic characteristics. 

With drainage basin size as the independent variable it is then possible to construct 

sediment yield rate curves for similar reservoirs (Lopez, 1978). However the 

applicability of this method of determining sedimentation depends upon the skill of the 

engineer or the sedimentologist conducting the reconnaissance survey and hence this 

method is best applied for a preliminary estimate of the sediment yield of the watershed. 

2.3: Sediment retained by the reservoir 

All the sediment that finds its way to a reservoir is not retained by it. Some part 

of the inflowing sediment is lost when the water in the reservoir discharges over the 

spillway during periods of high discharge. Trap efficiency of a reservoir is defined as 

the ratio of the quantity of deposited sediment to the total sediment inflow. Trap 

efficiency can be attributed to the following factors: 
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• Sediment particle fall velocity which primarily depends on the shape and size of the 

particle 

• Size and age of the reservoir, and 

• Type of outlets and the operation of the reservoir 

During periods of high inflow when there is an appreciable velocity of flow 

through the reservoir the inflowing sediment may be transported through the reservoir 

resulting in a lower trap efficiency. 

For large reservoirs, with storage capacity above 10,000 acre-ft, the trap 

efficiency can be assumed as 100% (Vanoni, 1975). For smaller reservoirs the trap 

efficiency can be estimated using trap efficiency charts constructed based on measurement 

of sediment deposits in a large number of reservoirs. 

Churchill (1948) presented a relationship to estimate the trap efficiency based on 

his research on Tennessee Valley Authority reservoirs. Churchill’s method relates the 

percentage of incoming sediment passing through the reservoir and the sediment index. 

The sediment index is the ratio of the period of retention (capacity, in cubic feet, at mean 

operating pool level divided by the average daily inflow rate, in cubic feet per second) 

and the mean velocity (in feet per second, obtained by dividing average gross-sectional 

area, in square feet, into the inflow). The proposed relationship is as shown in Figure 2- 

3. According to Borland (1971), as quoted in Heinemann (1982), Churchill’s method is 

more applicable than Brune’s method for estimating trap efficiencies for desilting and 

semidry reservoirs. 
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Figure 2-3: Reservoir trap efficiency curve, Churchill (1948) 
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It should be noted that Churchill’s trap efficiency curve for a reservoir is different 

for local silt and for silt discharged from an upstream reservoir. The curve for local silt 

is used when the eroded soils are not trapped by an upstream reservoir on the watershed. 

If, however, such an upstream reservoir which acts as a silt trap for the lower reservoir 

exists then the upper trap efficiency curve as shown in Figure 2-3 is used. 

Trap efficiency of small reservoirs can also be estimated using empirical 

relationships proposed by Brune (1953), based on the records of 44 normally ponded 

reservoirs. Brunes’ curves relating trap efficiency and the ratio between the reservoir 

capacity, in acre-ft, and mean annual water inflow, in acre-ft, are shown in Figure 2-4. 

Brune’s curves have been used more widely than other methods for estimating the trap 

efficiency of reservoirs (Heinemann, 1982). According to Gottschalk (1965), Brune’s 

curves overestimate the trap efficiency. He based his conclusion on the basis of his 

studies conducted on 18 small reservoirs, wherein the measured trap efficiencies fell 

between or below Brune’s envelope curves. The soils on the watershed of the reservoirs 

studied by Gottschalk were mostly composed of finer materials. 

The "Committee on Sedimentation Engineering" (1975) and "National Engineering 

Handbook" of the Soil Conservation Service (1983) suggest the use of Brune’s trap 

efficiency curves to estimate the trap efficiency of a reservoir. Based on his studies 

Brune developed upper and lower trap efficiency curves and the reservoirs studied by him 

had trap efficiency in this range. 
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CapACity-tfifiow ratio 

Figure 2-4: Reservoir trap efficiency curve, Brune (1953) 
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Chen (1975) has developed a series of curves for various particle sizes, relating 

trap efficiency to the ratio of basin area to outflow rate. According to him Churchill’s 

curves and Brune’s curves for determining the trap efficiency of reservoirs are compatible 

in the silt range. From the studies conducted by him he concludes that both Churchill’s 

and Brune’s trap efficiency curves tend to underestimate trap efficiency for coarser 

materials and overestimate it for finer materials. Thus, Gottschalk (1965) and Chen 

(1975), both conclude that Brune’s curve overestimates the trap efficiency of a reservoir 

for finer materials. Chen’s findings summarized in form of a graph are as shown in 

Figure 2-5. 

Analytical methods that are available for estimating trap efficiency of reservoirs 

are based primarily on a function of the ratio of reservoir volume to inflow rates. 

Karaushev (1966) and Borland (1971), as quoted in Lopez (1978), have proposed 

equations to estimate trap efficiency. However, these methods do not include an analysis 

of sediment characteristics and hence are not widely used by sedimentation specialists 

(Lopez, 1978). 

2.4: Distribution of sediment deposits 

When a stream enters a reservoir, the velocity of the inflowing water decreases as 

it comes in contact with the water in the reservoir. The sudden reduction in the stream 

velocity results in the deposition of coarser sediments, like sands and silty sands, near the 
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Figure 2-5: Trap efficiency expressed as a function of ratio of basin area to outflov 

rate (Chen, 1975) 
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mouth of the reservoir. This deposition continues until, at some distance within the 

reservoir, the flow velocity has been sufficiently reduced so that all the sediments of sand 

size or larger are deposited. The finer sediments which essentially consist of silts and 

clays are transported into the reservoir beyond the delta and are deposited throughout the 

bottom of the reservoir. Some of these bottom sediments are carried further down by 

density currents. A density current may be defined as the movement of a stream of fluid 

under, through, or over another fluid, the density of which differs by a small amount 

from that of the primary current. The most important and interesting type of density 

current, in lake sedimentation studies, is one which is formed by suspension of 

sediments. This type of density current is called as turbidity current. Turbidity currents 

composed of clay and silt sediments sometimes play an important role in the sediment 

distribution pattern of reservoirs (Middleton, 1966). A density current may also be 

generated in a reservoir due to the temperature difference in successive levels of water in 

the reservoir. This type of density current does not play a significant role in sediment 

distribution in a reservoir (Middleton, 1966). 

Some of the factors that influence the mode in which the sediment is deposited 

through the reservoir include the size and texture of sediment particles, size and shape of 

the reservoir, reservoir inflow-outflow relations and the reservoir operating rules 

(Borland, 1958). 
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In a relatively narrow reservoir, in which the flow can spread evenly across the 

pool, the coarse sediments spread to form a delta. On the other hand, if the stream 

enters a wide pool, the flow tends to enter the pool as a jet, and a finite velocity of flow 

will continue along this line for a appreciable distance (Vanoni, 1975). 

Figure 2-6 and Figure 2-7 illustrate the deposition of sediments in a reservoir. 

The coarser material gets deposited near the mouth of the reservoir (Figure 2-6). The 

finer sediments are carried further down the reservoir. As the delta formation takes place 

the successive stages are deposited further away from the mouth of the reservoir. Figure 

2-7 shows the effect of density currents on the movement of sediments in the reservoir. 

Actually the manner in which the sediments deposit depend on a number of 

interrelated factors which tend to affect the process and modify the magnitude and 

location of deposits. These factors include among others (Lopez, 1978). 

• Fluctuating waterlevels 

• Temporal variations in sediment and flow discharge 

• Shape of the basin 

Fluctuating water levels occurring in many reservoirs play an important role in 

delta formation. Usually, deltas tend to form at water surface elevation. At low 

elevations of the water surface, the deltas form far down in the reservoir. At higher 

water elevations they form near the upper reaches of the reservoir. Lowering of the 

water elevation causes the deltaic sediments to be carried and deposited downstream. 
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Figure 2-6: Typical reservoir-delta profile (Vanoni, 1975) 
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Figure 2-7: Effect of density 
currents (Vanoni, 1975) 
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Temporal variations in flow and sediment discharge also affect the process of delta 

formation. At the peak of the flow hydrograph, the sediment transport capability of a 

stream increases due to an increases in the velocity of flow. If this increase in the 

sediment transport capacity of the stream is greater than the corresponding inflowing 

sediment load, degradation of the bed occurs. This causes the delta to move downstream. 

Shape of the basin also influences the manner in which the sediment is distributed 

spatially through a reservoir. The deposits normally will spread uniformly along the 

axis, for a regularly shaped reservoir. If the reservoir is irregular in shape, there might 

be marked irregularities in the depositional pattern (Lopez, 1978). 

2.5: Mathematical models in reservoir sedimentation 

More than twenty methods, empirical as well as analytical, have been proposed to 

calculate sediment distribution pattern in reservoirs (Annandale, 1987). 

Prior to 1953, it was believed that the sediment discharging into a reservoir was 

transported to the dam wall and then was deposited from the lowest elevation upwards. 

Cristofano (1953), as quoted in Annandale (1987), was perhaps the first researcher to 

recognize that this was not true and to propose a model which took into account sediment 

distribution throughout the reservoir. Five years later, Borland and Miller proposed an 

empirical method, known as the area-reduction method, to explain the sediment 

distribution in a reservoir. Menne and Kriel (1959), Hobbs (1969), Borland (1970), 
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Szechowycz and Qureshi (1973), Croley et al (1978), Pemberton (1978) and Chien (1982) 

have proposed empirical methods to explain the distribution of sediments in reservoirs 

(Annandale, 1987). 

With the general availability of high speed digital computers, numerous models 

based on mathematical equations were proposed to explain the sediment distribution 

pattern in reservoirs. These models are based either on the diffusion and jet theory or 

sediment transport theories. 

Jet and Diffusion Theory 

The diffusion and jet theory assumes that the sediment particles travel as a 

submerged jet. A submerged jet differs from a free jet in two aspects 

• Lack of gravitational influence 

• Interaction between the jet and the surrounding fluid 

Most of the researchers who have worked on the problem of sedimentation 

distribution assume that the jet spreads at a linear rate and the cross-sectional area of flow 

increases linearly downstream. Actually the boundary of the jet is curvilinear parabolic 

instead of linear with a triangular velocity distribution in the zone of diffusion (Lopez, 

1978). Jet diffusion, as proposed by Lopez, can be schematically represented as shown 

in Figure 2-8. 
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Figure 2-8: Jet Diffusion as proposed by Lopez 
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In most of the analytical models that have been proposed to explain the 

distribution of sediments, the major drawback is the large number of parameters that 

require calibration. In short, this means that the user of the models should have a fairly 

good understanding of the sediment distribution pattern before actually using the model 

that simulates sedimentation. 

Chang and Richards model 

Chang and Richards (1971) proposed a model that simulated the sediment 

distribution pattern in a reservoir for variable length and time. The equations used by 

them to simulate sediment distribution are given below. 

Continuity of sediments 

—(vbhc)+—(bhc)+p—(bz)-q-Q 
dx dt dt ' 

Continuity of water 

vbh)+-z(te) ~4m-° ox ot dt 

Dynamic Equation 

j-(p mvbh)+^(p ybh)--j-(pjb^))-p ^bhi^+^-bzQ 
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where, 

x = distance along the channel 

v = mean velocity 

h = mean depth of flow 

b = channel width 

z = thickness of the sediment layer 

p = volume of sediment in unit volume of sediment layer 

q,= lateral discharge of sediments per unit length of channel 

<!„,= lateral discharge of sediment laden water per unit length of channel 

c = the concentration of sediment in sediment laden water 

g = acceleration due to gravity 

Z = elevation of original bed from arbitrary datum 

z0= boundary shear stress 

pm= density of sediment laden water 

In deriving these basic differential equations the following assumptions were made 

(Chang and Richards, 1971): 

• The velocity is fairly uniform over the cross section 

• The sediment-laden water is substantially homogeneous 

• The channel is a wide rectangle in cross section and is assumed to be sufficiently 

straight and uniform in reach to permit mathematical representation by a one 

dimensional model. 
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In actuality, these assumptions do not strictly hold up to a real world problem. 

The velocity is not fairly uniform as is seen in Figure 2-8. Also, as the reservoir bottom 

is irregular, and as the sides have slopes, the channel is not a wide rectangle and uniform 

in reach in cross section. However, to permit mathematical representation by a one 

dimensional model these assumptions are essential. 

As b, the channel width is assumed to be non-variable, there are four unknown 

variables, v, h, z and c (as defined previously), which have to be determined to explain 

the distribution of sediments in one-dimension. Another equation that can be used to 

solve for these unknowns, and used by Chang and Richards is given below 

c-KvMhH 

where, 

gw 

In the above expression, 

k = coefficient of sediment transport capacity 

w = settling velocity of the particle 

m, n = dimensionless parameters 
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Lopez’s model 

Perhaps the most detailed model yet to explain the spatial distribution of sediments 

in a reservoir was proposed by Lopez in 1978. His model not only simulates 

sediment distribution in the longitudinal direction but also takes into account the 

distribution of sediments in a transverse direction. 

The advantage of Lopez’s model over Chang and Richard’s model is that Lopez 

does not assume a fairly uniform velocity over the cross section but a more realistic 

velocity distribution as shown in Figure 2-8 (Annandale, 1987). Also, instead of 

assuming the flow in the entire channel to be one dimensional, Lopez divided the flow in 

the reservoir into a number of imaginary channels, and the flow in channel was 

considered as one dimensional. 

For the sake of modelling, Lopez divided the reservoir into three zones- river 

zone, transition zone and reservoir zone. The discharge of sediments in the river zone 

(primarily due to backwater effects), was viewed to be one dimensional. The flow in the 

transition zone was viewed to be two dimensional, and the flow pattern was assumed to 

be adequately characterized by the jet theory. The flow in the reservoir zone was divided 

into a number of imaginary canals, and the flow in each canal was considered to be one 

dimensional. The river reservoir system according to Lopez is as shown in Figure 2-9. 
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Rlvar Transition Rasarvoir 

I 

Figure 2-9: Reservoir-river system according to Lopez (1978) 
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2.6 Time independence concept and stream power theory 

Erosion, sediment yield, and landscape formation are closely interrelated. 

Wolman and Miller (1960) have suggested that a river channel achieves a time- 

independent form that rapidly adjusts to the changing environmental conditions. The 

concept of time independence and dynamic equilibrium are closely tied up with the view 

of the landscape as an open system through which energy and matter are recycled 

(Laronne and Mosley, 1982). 

Stream power theory can be used to explain the time independence concept and 

the dynamic equilibrium of the system by considering the reservoir as an open system. 

In a reservoir stable conditions occur when the applied stream power is minimized 

(Chang, 1979; Yang, 1976; as quoted in Annandale, 1987). Under such conditions 

uniform flow develops, sediment concentration remains constant, and the bed profile does 

not change with time. Unstable conditions on the other hand are characterized by 

continuously changing flow conditions and bed profile. Under unstable conditions, the 

applied stream power approaches a constant minimum value throughout a non-equilibrium 

system when stable conditions are approached (Annandale, 1987). 
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Stream Power Theory 

Stream power concepts can be used to explain a variety of sediment transport 

phenomena, including those occurring in reservoir sedimentation (Annandale, 1987). 

When a sediment laden stream inflows into a reservoir, the distribution of the rate of 

internal entropy production is not uniform. The highest rate of internal entropy 

production occurs at the inflow into the reservoir, where a high degree of turbulence 

develops, as the flow is suddenly retarded by the virtually stagnant water in the reservoir. 

As the inflowing water moves through rest of the reservoir, the turbulence (disorder) and 

thus, the rate of internal entropy production is much lower and also exhibits a much less 

pronounced spatial variation (Annandale, 1987). This is illustrated in Figure 2-10. 

As sediment is deposited in the reservoir the velocity of the inflowing water 

increases, due to a decrease in the channel depth, leading to a more uniform distribution 

of sediments until a constant value of internal entropy production (P) is reached. This is 

as illustrated in Figure 2-11. Under these conditions the mean sediment discharge 

throughout the reservoir approaches a constant value. This results in the longitudinal 

profile and the rate of internal entropy production being time-independent, 

i.e. 

dP 
dt 

0 



www.manaraa.com

32 

Figure 2-10: Stream power distribution in a reservoir with no deposited sedim 

(Annandale, 1987) 

P 

x 

Figure 2-11: Stream power theory in a reservoir with deposited sediment 

(Annandale, 1987) 
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The actual minimum value of the rate of internal entropy production (P) is not an 

universal constant but varies from case to case and is dependent on the external entropy 

supply and other limitations imposed on the system (Annandale, 1987). In case of 

unstable non-equilibrium conditions the shape of the sediment profile changes constantly. 

Under such conditions, the stream power is minimum when a stable non-equilibrium state 

is approached asymptotically (Annandale, 1987). 

Annandale (1987) applied stream power theory to calculate the reservoir bottom 

profile for the Glen Alpine reservoir and the Wentzel reservoir in South Africa and as 

seen in Figure 2-12 and Figure 2-13 the actual and the calculated sediment profiles are in 

agreement with each other. The broken lines in these figures represent the calculated 

profiles, whereas the full lines represent the observed sediment profile. 
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Figure 2-12: Actual and calculated sediment profiles for Glen Alpine Reservoir 

(Annandale, 1987) 

Figure 2-13: Actual and calculated sediment profile for Wentzel Reservoir 

(Annandale, 1987) 
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CHAPTER 3: DESCRIPTION OF THE LAKES UNDER STUDY 

3.1: Introduction 

The purpose of this study is to compare and contrast the varying sedimentation 

rates and distribution pattern in three selected Iowa lakes. The lakes selected for the 

study are Pine Lake in Hardin County, Black Hawk Lake in Sac County and Union 

Grove Lake in Tama County. Pine Lake and Union Grove Lake are river dammed lakes 

and Black Hawk Lake has a glacial origin. The Pine Lake watershed has two lakes: 

Lower Pine Lake and Upper Pine Lake. Upper Pine Lake was originally constructed as a 

silt trap for the Lower Pine Lake. The following sections give a topographic, climatic 

and geologic description of the three lakes under study. A brief description of the lakes 

morphology is also included in the following sections. 

3.2: Black Hawk Lake 

Located on the terminal moraine of the Cary lobe of the Wisconsin glacial 

surface, Black Hawk Lake is the southernmost glacial lake in Iowa. The lake occupies 

parts of section 2, 3 and 4 in Viola township and sections 33, 34 and 35 in Wall Lake 

township of Sac County, Iowa. This lake has had three other names in the past - Boyer 

Lake, Walled Lake and Wall Lake (Hanson, 1982). 
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Lake morphology 

Black Hawk lake is a very shallow lake. The lake bathymetric map for 1981 

indicates that the average depth of the lake was 4.43’. Appendix A shows bathymetric 

maps for years 1916, 1935, 1973, and 1981. These bathymetric maps were used to 

perform sedimentation analysis of the lake. Based on the past bathymetric surveys 

conducted on the lake the morphological characteristics can be summarized as given 

below in Table 3-1. 

Table 3-1: Morphological characteristics of Black Hawk Lake 

Year 1916 1935 1973 1981 

Area (acre) 799.26 791.12 770.83 763.40 

Volume (acre-ft) 3994.01 3349.08 3813.25 3383.22 

Average Depth (ft) 4.25 4.23 4.95 4.43 

Volume @ (m.s.l.) 1220.5 1220.5 1220.5 1220.5 

Geology of the region 

The surface geology of the Black Hawk Lake watershed consists primarily of 

Wisconsin glacial till (71%) and alluvium (18%). About 4% of the watershed is loess 

capped Kansan glacial till. The remaining portions of the watershed are covered by 

glacial outwash deposits, gravel pits, marsh, fill and glacial lake sediments (Hanson, 

1983). Figure 3-1 shows the surficial geology of Black Hawk lake watershed. Sac 
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Black Hawk Lake 

BlACKHAWK LAKE AAT£R$H€D 

Figure 3-1: Surficial geology of Black Hawk Lake watershed (Hanson, 1982) 
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County has been subjected to three stages of glaciation. The first two, the Nebraskan and 

Kansan, covered all of the county. The Tazewell substage of the Wisconsin glacier 

advanced from the northeast to near the southwest comer of the county, and the Cary 

substage of the Wisconsin glacier covered approximately the eastern half of the county. 

Loess ranges from 15’ to 20’ thick on summits in the southwestern part of the county to 

about 4’ or less near the border of the Cary drift, where Black Hawk lake watershed is 

situated (SCS, 1979). 

Climatic conditions 

The annual precipitation in Sac County, Iowa ranges from 28" in the western part 

of the county to almost 29" in the south-east comer (SCS, 1979). The climate of Sac 

County, as classified by SCS, is humid to subhumid. 

Topography 

The soils in the eastern part of the county are nearly level to undulating. In the 

western part, except the southwest comer of the county, they are mainly gently rolling to 

hilly. The prevailing slope is to the south and east. Elevation ranges from about 1000’ 

at the low point in the southeastern part of the county to about 1400’ near the northwest 

comer (SCS, 1979). 
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3.3: Pine Lake 

Pine Lake State Park, Hardin County, is about 1/2 mile northeast of Eldora on 

Iowa Highway 118. The park consists of two interconnected recreational lakes - Lower 

Pine formed in 1922 by impounding Pine creek near its junction with Iowa River and 

Upper Pine formed in 1935 by constructing the Upper Pine Lake dam on Pine Creek. 

Pine lake since its inception has been subjected to sedimentation problems. The eastern 

portion of the lake is gradually turning into marshlands thereby decreasing the overall 

depth of the lake and posing potential fish winterkill problems due to small volume of 

water available to hold the dissolved oxygen in the winter under ice cover (Lohnes et al, 

1991). 

Lake morphology 

An extensive survey of the Upper and Lower Pine lakes was conducted in January 

1990 to create the lake bathymetric maps. Lake depth measurements were made by 

soundings through the ice along 45 transects. A total of 293 soundings were made on the 

two lakes. Appendix A shows the bathymetric maps of the two lakes based on the 

surveys conducted. These maps were used to carry out sedimentation analysis of the 

lake. Based on the previous bathymetric surveys morphological characteristics of Lower 

Pine Lake can be summarized as in Table 3-2. 
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Table 3-2: Morphological characteristics of Lower Pine Lake 

Year r 1922 1932 1950 ^ 1990 

Area (acre) 69.63 68.44 66.27 63.50 

Volume (acre-ft) 680.90 586.35 516.52 354.68 

Average Depth (ft) 9.78 8.57 7.79 5.59 

Volume @ (m.s.l.) 970.5 971 971 970.5 

Geology of the region 

As a part of the diagnostic study on Pine Lake to provide the Iowa Department of 

Natural Resources adequate information for planning a lake restoration program on the 

lake and its watershed, a surficial geology map as shown in Figure 3-2 was prepared. 

The surficial geology of the Pine Lake watershed consists mainly of loess (77.9%) and 

alluvium (17.6%). Sandstone is the parent material of soils which cover 2.8% of the 

watershed. Glacial till covers 1.3% of the total area and the rest is covered by Eolian 

sand and water. 
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Figure 3-2: Surficial Geology of Pine Lake watershed 
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Topography 

From the SCS soil report for Grundy County and Hardin County as also the 

USGS topographical maps, it is observed that the topography of the drainage basin is 

fairly flat to undulated in the upper reaches of the watershed and steeper towards the 

lake. The elevation varies from 1120’ at the eastern portion of the watershed to about 

960’ near the dam. 

Climatic conditions 

Approximately 70% of he yearly precipitation of Hardin County and Grundy 

County, Iowa in which the Pine Lake watershed lies, falls during the period of April to 

September. The climate in general can be classified as humid to subhumid. 

3.4: Union Grove Lake 

Union Grove Lake was built in 1934 as an impoundment on Deer Creek which 

discharges into the Iowa River at Tama, Iowa. The lake lies four miles south of the towr 

of Gladbrook and about fifteen miles northeast of Marshalltown, Iowa. 
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Geology of the drainage basin 

The drainage basin of Union Grove Lake has an area of 6895 acres and is within 

the region of the Iowa erosion surface of Wisconsin age. This geomorphic surface is 

characterized by multi-level, stepped erosion surface with both glacial till and loess 

occupying the uplands (Lohnes et al, 1982). The watershed map of Union Grove Lake is 

as shown in Figure 3-3. As is seen from the figure, 75% of the watershed is loess and 

glacial till underlies about 8.5% of the drainage basin and the rest is alluvium, colluvium, 

terrace deposits and some limestone outcrops. 

Lake morphology 

Bathymetric surveys were conducted on Union Grove Lake in 1936, 1950 and 

1981. Based on these surveys the morphological characteristics of the lake can be 

summarized as in Table 3-3. 

Table 3-3: Morphological characteristics of Union Grove Lake 

Year 1936 1950 1950 1970 1981 

Area (acre) 118.04 105.3 129.55 116.85 106.62 

Volume (acre-ft) 796.62 724.98 998.94 836.12 662.15 

Average Depth (ft) 6.75 6.88 7.71 7.16 6.21 

Crest Elevation (m.s.l.) 937.6 937.6 939.6 939.6 939.6 
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Figure 3-3: Surface geology of Union Grove Lake watershed (Lohnes et al, 1982) 
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CHAPTER 4: COMPUTER SOFTWARE USED IN THE STUDY 

4.1: Introduction 

The sedimentation study of the three lakes under consideration involved 

transferring hand-drawn bathymetric maps into the computer using AUTOCAD and using 

these data to estimate the amount of sedimentation. This chapter briefly describes the 

computer software used to estimate the amount of sedimentation and the methods used to 

make sedimentation computations. 

4.2: AUTOCAD 

To make the sedimentation computations, the hand-drawn maps were input into 

the computer using AUTOCAD. AUTOCAD is a computer graphics program with a 

wide range of applications. Of particular interest to this study is the ability of 

AUTOCAD to convert the hand-drawn maps into drawing files. This method of 

transferring a hand-drawn map into a computer perceptible map is referred to as 

digitizing, and involves converting points along the contours of a bathymetric map into 

(X, Y,Z) values in Cartesian coordinate system using the TABLET command. 

AUTOCAD also offers the advantage of obtaining areas bounded by contours of the lake 

directly, by using the AREA command, thereby avoiding the tedious work associated 
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with the conventional method of planimetering the contour lines to obtain the areas. 

Figure 4-1 shows a flowchart of the various steps involved in converting a hand-drawn 

map into computer compatible map using AUTOCAD. The drawing files are then 

converted by AUTOCAD into DXF (Drawing Interchange file) format, an ASCII file, 

which can then be used by many third party programs. The DXF files can be converted 

into data files using ZTAB3, a special utility program developed by the Iowa State 

University Land Use Analysis Laboratory for translating into ASCII files (of X, Y, Z 

data) for use by SURFER. 

4.3: SURFER 

SURFER is a computer software program used as a tool for creating high 

resolution two and three dimensional graphics. Through various available menus and 

more than 100 options contour maps and surface plots of XYZ data are created. Figure 

4-2 shows a flowchart of the various menus available and their application to this study. 

GRID menu 

This option converts files of irregularly spaced data points into grid files of 

regularly spaced data points (nodes) in the XY plane and then interpolates the elevation 

(Z-coordinate) at each node using various conditions specified by the user. The first step 
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Figure 4-1: Flowchart showing various steps involved in AUTOCAD 



www.manaraa.com

48 

Figure 4-2: Flowchart showing various menus in SURFER 
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in creating a grid file is to import the XYZ data into the GRID. The GRID file is 

obtained by specifying different parameters such as grid size, search radius, number of 

search points and the interpolation method that has to be used. 

The grid size is used to specify the density of the final grid. According to Jones 

(1987) the grid interval should be so chosen that a given grid square contains at the most 

one data point. A grid size of 50x50 usually gives pleasing results. Maintaining a 

balance between the accuracy desired and the computer bytes utilized a grid size of 51x51 

was used to create the grid files for this study. 

There are three gridding methods available in SURFER - Inverse distance, 

Kriging and Minimum curvature. Inverse distance uses a weighted averaging technique 

to interpolate grid node elevations from XYZ data. The weights are inversely 

proportional to the distance from the grid node. 

Minimum curvature is the fastest among the three methods. This method first 

examines all data and sets the nearest grid node to that data value, thereby honoring the 

data. However this method gives poor results especially when the data are unevenly 

distributed in space. 

Kriging uses geostatistical techniques to calculate the autocorrelation between data 

points and produce a minimum variance unbiased estimate. The variation is estimated by 

calculating a semi-varignon, a statistical tool that relates variation to distance (Jones, 

1987). In other words, Kriging comes up with a value of elevation at each node based on 

the elevations of the data points in the user specified search sector. Although in theory 
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Kriging produces the most accurate estimates, the effectiveness of this method depends on 

the proper selection of various parameters, such as search radius, search method, number 

of search points, grid size and search sector (SURFER, manual). This study used 

Kriging method to make the grid files primarily because the method gave better results. 

Search radius and the number of search points tells the computer the area within 

which it has to scan to make autocorrelation between points while making the grid file. 

It was observed that the default value of 10 search points and a normal search gave the 

best results. The search radius has to be set depending upon the size of the lake. 

TOPQ menu 

TOPO is a menu-driven contouring program which makes use of the grid data 

which may be in binary or ASCII form. Several options are available in the TOPO menu 

and the user may use the default parameters or specify his/her own. TOPO provides the 

on-screen contour line editing option which allows alteration of the Z value at any point 

at a grid node. For nodes near areas of low input data, SURFER correlates and assigns 

Z value to each node, based on the Z values of the number of user specified points within 

the search radius. Towards the boundaries, SURFER correlates and draws contours, 

taking into account the nodes that lie outside the irregularly shaped reservoir. 
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SURF menu 

SURF is an interactive, menu-driven graphic program that creates three 

dimensional surface representations as a measured perspective drawing on the computer 

screen. This has potential application in visually analyzing the spatial distribution of 

sediments in lakes. 

VIEW menu 

This option enables viewing the contour or the three dimensional plots on the 

screen before actually plotting them with a plotter or a printer. 

UTIL menu 

UTIL is a utility program that performs several functions on the XYZ data in the 

grid files. Of particular importance in this study is the ability of UTIL to calculate the 

volumes of solids defined by gridded surfaces. 
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4.4: Sedimentation Computation 

Even though several methods are available to estimate the amount of 

sedimentation, three methods are considered herein. The volume of sediments can be 

estimated by using the modified prismoidal method; by using SURFER, a computer 

software program; or by using the universal soil loss equation in combination with the 

trap efficiency curves. In the first two methods the amount of sedimentation is 

determined by computing the difference in the lake volume at a fixed level at different 

time intervals. This level is usually taken as the operating level for the lake. The third 

method uses empirical relationships which relate the capacity-inflow ratio with the 

fraction of sediments retained by the lake. 

Comparison and differentiation between SURFER and modified prismoidal method 

is made to evaluate the their applicability for sedimentation computations. 

Modified prismoidal method 

In this method the lake volume is estimated by considering the slice between any 

two successive contours as a trapezoid, as illustrated in Figure 4-3. The volume is then 

computed by averaging the area encompassed by the two contours and then multiplying it 

by the contour interval. The lake volume at any level can then be estimated by taking the 

cumulative volume up to that level. The lake bottom does not, however, in reality 
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Figure 4-3: Terms of modified prismoidal formula for determining capacity of a 

reservoir (Source: Vanoni, 1975) 
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conform to this model, as it is more or less undulated. Nevertheless this model is 

effective in estimating the lake volume if the contour interval is small as compared to the 

total depth of the lake. 

4.5: Comparison between volume obtained by Modified Prismoidal and SURFER 

Comparison was made between these two methods for Union Grove Lake. Figure 

4-4 and 4-5 make comparison between the volumes obtained using the modified 

prismoidal method and SURFER for years 1950 and 1981 respectively. The figures 

indicate that these methods are more or less comparable with each other. Table 4-1 

compares the lake volumes for Union Grove Lake obtained by using SURFER and 

modified prismoidal method. 

Table 4-1: Comparison of lake volume using SURFER and modified prismoidal method 

Volume of t he lake Variation 
Year SURFER Modified 

Prismoidal 
(%) 

1950 998.94 1031.26 3.13 

1981 662.15 698.99 5.27 
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Figure 4-4: Comparison of volume obtained using the modified prismoidal formula 

and SURFER for Union Grove Lake (1950) 
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Elevation (m.s.l.) 
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Figure 4-5: Comparison of volume obtained using the modified prismoidal formula 

and SURFER for Union Grove Lake (1981) 
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CHAPTER 5: ANALYSIS OF LAKES UNDER STUDY 

5.1: Introduction 

Sedimentation, as described earlier, is a complex phenomena which depends on 

numerous factors. The various methods conventionally used to estimate sedimentation 

have been discussed earlier in this thesis. A novel approach to estimate the amount of 

sedimentation in reservoirs based on the technique of normalized hypsometric analysis is 

proposed here. 

Researchers have used hypsometric analysis to understand the morphology of a 

drainage basin. Hypsometric curves, which are essentially elevation vs area curves, were 

used by Strahler (1952) to describe the horizontal cross-sectional area of a drainage basin 

to the relative elevation above the basins mouth. Hack (1965) and Moore (1966) have 

also used the concept of hypsometric analysis to describe drainage basin morphology. 

Hypsometric curves can used to describe the morphology of a lake and to estimate 

the amount of sedimentation. The area-depth hypsometric curves are a useful tool in 

understanding the spatial distribution of sediments in reservoirs. The shape of a 

hypsometric curve gives an indication of the spatial distribution of sediments in a 

reservoir. The amount of sedimentation that has occurred during a time interval is given 

by the area between the hypsometric curves at two different times. 
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5.2: Normalization of Hypsometric Curves 

Strahler (1952) has suggested the use of hypsometric curves (normalized elevation 

vs normalized area) to compare drainage basins irrespective of their sizes. Normalization 

is the representation of two variables as a ratio considering the maximum value in the 

range as unity; so that the other values in the range will vary from 0 to 1 (0% to 100%). 

Sedimentation involves a decrease in the lake capacity due to the deposition of the 

suspended sediments over the lake bottom. As a part of this research, the elevation and 

volume of the lakes were plotted on normalized basis. The normalized elevation was 

taken as the y-variable and the normalized volume was taken as the x-variable. 

5.3: Sedimentation analysis of lakes under study 

SURFER was applied for the sedimentation analysis of the three lakes under 

study. The analysis included comparing reservoir elevation with reservoir volumes to 

estimate the amount of sedimentation and reservoir elevation with reservoir area to 

characterize the morphology of the lakes. Three types of comparisons were made for the 

lakes: 

• Reservoir elevation vs reservoir area 

• Reservoir elevation vs reservoir volume 

• Normalized reservoir elevation vs normalized reservoir volume 
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Hack (1965) and Moore (1966), used normalization technique to compare drainage 

basins. In order to minimize the bias induced by localized abnormalities, instead of 

normalizing to the maximum depth, normalization was done at an arbitrary value of area. 

Similarly in this study, to partially eliminate the bias due to localized abnormalities, 

normalization of the reservoir elevation was done approximately at the 5 % lake area 

contour. 

5.4: Lakes under study 

Lower Pine Lake 

Lake bathymetric surveys were conducted on the Lower Pine Lake in 1925, 1932 

and 1950. In January 1990, an extensive survey of the lake bottom was carried out. The 

elevation and volume of the lake were compared for these four years for which data were 

available. A graphical representation of these data is as shown in Figure 5-1. Active 

sedimentation of the reservoir is apparent from the decreasing volume of the lake. It is 

interesting to notice that in the case of this lake the rate of sedimentation is high during 

the earlier years and then decreases. This can be attributed to the following reasons: 

• Construction of the Upper Pine Lake which serves as a "silt trap" for the Lower Pine, 

thereby trapping the eroded soils of the watershed. 

• Decrease in trap efficiency of the reservoir due to decreased volume. 
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Figure 5-1: Elevation vs volume (Lower Pine Lake) 
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In order to describe the morphology of the lake the elevation of the lake was 

compared with the lake area and the graphical representation of the comparison is given 

in Figure 5-2. The lake had a maximum depth of 19.6’ and an area of 70.5 acres when 

it was constructed. Later on sediments were gradually deposited and the lake decreased 

in area due to delta formation. The depth of the lake also decreased considerably and the 

maximum depth of the lake was 14.8’ in 1990. 

Table 5-1 gives the sedimentation analysis of Lower Pine Lake. 

Table 5-1: Sedimentation analysis of Lower Pine Lake 

Year lake volume Total sedimentation sedimentation rate 
(acre-ft) (acre-ft) (acre-ft/year) 

1922 680.9 
130.6 13.06 

1932 550.3 
194.9 3.57 

1950 486.0 
326.2 3.28 

1990 354.7 
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Elevation (m.s.l.) 
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Figure 5-2: Elevation vs area (Lower Pine Lake) 
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Normalization was applied to Lower Pine lake by comparing normalized elevation 

with normalized volume. Figure 5-3 shows the elevation and volume relationship on a 

normalized basis. It is seen from the figure that the normalized curves for the four years, 

for which the data were available, almost overlap. This leads to the conclusion that this 

dammed lake has a typical characteristic curve, or a "signature", associated with it when 

compared on a normalized volumetric basis. 

Union Grove Lake 

Before proceeding with the sedimentation analysis of Union Grove lake it is 

essential to recognize two things pertaining to the lake: 

• The dam crest was raised by 2’ in 1954 thereby increasing the reservoir capacity. 

• The lake was dredged in the 1970s and no data were found regarding the volume of 

sediments removed from the reservoir. 

Bathymetric surveys were conducted on Union Grove Lake in 1936, 1950, 1970 

and 1981. The plot for elevation vs volume for the lake is as shown in Figure 5-4. 

From Table 5-2, it is seen that the sedimentation rate in the earlier stages of the reservoir 

was 5.12 acre-ft/year. After raising the dam crest the average sedimentation increased 

and was 8.14 acre-ft/year. This probably is due to altering the natural equilibrium of the 

watershed due to raising of the dam crest. 
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Figure 5-3: Normalized elevation vs normalized volume (Lower Pine Lake) 
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Elevation (m.s.l.) 
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Figure 5-4: Elevation vs volume (Union Grove Lake) 
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Table 5-2: Sedimentation analysis for Union Grove T -aVe 

Year Volume of Volume @ Sedimentation Average 
lake elevation sedimentation 

(acre-ft) (ft) (acre-ft) (acre-ft/year) 
1936 796.62 937.6 

71.64 5.12 
1950 724.98 937.6 
1950 998.94 939.6 

162.82 8.14 
1970 836.12 939.6 
1970 836.12 939.6 

??? ??? 
1981 662.15 939.6 

Area-elevation relationship was studied to account for the morphological 

characteristics of the reservoir. As seen from Figure 5-5, the area of the lake has 

decreased over the years due to delta formation. The area of the lake in 1981 is greater 

than it was in 1950. This is explained by the fact that the crest of the dam was raised by 

2’ in 1954 to increase the reservoir capacity. The maximum depth of the lake was 17.8’ 

when it was formed in 1936 and it decreased to 14.2’ in 1981 due to deposition of 

sediments. 

Normalization was applied to Union Grove Lake by comparing the normalized 

elevation with the normalized volume. Figure 5-6 shows the elevation and volume 

relationship for Union Grove Lake on a normalized basis. Again as was the case with 

Lower Pine Lake the normalized curves for the years for which the data were available 

nearly overlap. 
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Elevation (m.s.l.) 

Figure 5-5: Elevation vs area (Union Grove Lake) 
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Normalized Elevation (%) 
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Figiire 5-6: Normalized elevation vs normalized volume (Union Grove Lake) 
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When a lake is dredged or the dam crest is raised, the resulting normalized 

elevation vs normalized volume curve is somewhat different from the characteristic curve 

for the lake. It should be noted that the normalized curve for 1981 nearly overlaps the 

curves for 1970. Also, as seen from the figure the curve for 1981 is in between the 

curves for 1970 and 1950, thereby suggesting that 

• the lake is gradually attaining its characteristic curve prior to dredging of the reservoir 

and raising of the dam crest, or 

• the lake has attained a new equilibrium 

From the stream power theory it follows that the sediments are deposited in such a 

way that the rate of internal entropy production is minimized. When a lake is dredged, 

the natural equilibrium is altered, disorder increases, and therefore the rate of internal 

entropy production increases. Sediments are then deposited in such a way that 

equilibrium is attained. Through a complicated process which is influenced by numerous 

interrelated factors like fluctuating water levels, temporal variations in flow and sediment 

discharge, density currents etc., the lake tends to attain its original characteristic curve. 

Black Hawk Lake 

Before describing the sedimentation analysis of Black Hawk Lake it is essential to 

note that the lake was dredged in 1938-39 and no documentation of the volume of 

dredged sediments was found. Bathymetric surveys were conducted on Black Hawk Lake 
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in 1916, 1935, 1973, and 1981, and the data obtained from these surveys were used in 

conducting the sedimentation analysis. 

The graphical representation of the elevation and volume relationship for Black 

Hawk Lake is given in Figure 5-7. As seen from the figure the lake has decreased in 

volume over the years due to sedimentation. To describe the morphological 

characteristics of the lake a graphical representation of elevation vs area, as shown in 

Figure 5-8, was used. It is seen that the area of the lake has decreased over the years 

due to sedimentation of this glacial lake. Table 5-3 gives the sedimentation analysis of 

Black Hawk Lake. As seen from the table, the initial rate of sedimentation was 33.94 

acre-ft/year. When the lake was dredged in 1973, the natural equilibrium of the system 

was altered and this resulted in increased sedimentation. The sedimentation rate after 

dredging was found out to be 53.75 acre-ft/year. 

Table 5-3: Sedimentation analysis of Black Hawk Lake 

Year Volume of 
lake 

Volume @ 
elevation 

Sedimentation Average 
sedimentation 

(acre-ft) _ («) (acre-ft) (acre-ft/year) 
1916 3994.01 1220.5 

1935 3349.08 1220.5 
644.93 33.94 

1973 3813.25 1220.5 

1981 3383.22 1220.5 
430.03 53.75 
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Voluma (acrt-ft) 
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Figure 5-7: Elevation vs volume (Black Hawk Lake) 



www.manaraa.com

72 

Elevation (m.s.l.) 

Figure 5-8: Elevation vs area (Black Hawk Lake) 



www.manaraa.com

73 

Normalization was applied to Black Hawk Lake. Again, as seen in Figure 5-9, as 

in the case of the other two lakes the normalized curves almost overlap. However the 

normalized curve for Black Hawk lake was considerably straight as compared to the other 

two lakes. As seen from the figure the NENV curve for 1973 and 1981 is slightly differs 

from the previous two dates. This can be attributed to the dredging of the lake. 

However it is also seen from the figure that the lake is gradually attaining its original 

characteristic curve. 

Figure 5-10 shows the three lakes on a normalized basis on the same graph. It is 

seen from the figure that the NENV curves for the three lakes under study are quite 

different from each other. These varying shaped curves are a reflection of the various 

watershed characteristics, the shape of the reservoir itself, the reservoir bottom profile, 

and the reservoir side slopes, which is characteristic of each drainage basin. 

5.5 Factors affecting NENV curve 

The shape of normalized elevation and normalized volume (NENV) curve depends 

upon various interrelated factors which include: 

• Shape of the reservoir 

• Sideslopes of the reservoir 

• Spacing of contour lines 

• Distribution of relief in the reservoir 
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Normalized Elevation (%) 
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Figure 5-9: Normalized elevation vs normalized volume (Black Hawk Lake) 
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Normalized Elevation (%) 

Lower Pine Black Hawk Union drove 

Figure 5-10: Three lakes on a normalized basis 
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Studies conducted as a part of this research on the three lakes under study 

revealed that the NENV curves for a particular lake are time invariant. This means that 

the NENV curves for the lake remain approximately the same over time. This is in 

agreement with the concept of time independence and dynamic equilibrium for reservoirs 

as explained by the stream power theory. 

In order to illustrate the effect of the shape of the reservoir, reservoir side slope, 

and the spacing of contour lines (which depends on the distribution of relief in the 

reservoir) on the NENV curves, the curves were plotted for various three dimensional 

figures. 

Shape of the reservoir 

To illustrate the effect of the shape of the reservoir on the normalized curves, five 

simple three dimensional figures of varying shapes were selected. The three dimensional 

figures chosen for the geometrical exercise were a hemispherical bowl, a paraboloid, a 

cone, a cylinder, and a rectangloid. The NENV curves for these five figures are as 

shown in Figure 5-11. As seen from the figure, the curve for the hemisphere is the 

steepest, and that for the rectangloid and the cone is straight. In the case of a 

rectangoloid and a cylinder, the sides are vertical and so the area at any horizontal cross- 

section remains the same. Therefore, the normalized volume increases linearly with the 

normalized elevation. The curve for a paraboloid is steeper than that of a cone. The 
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Figure 5-11: Effect of shape of reservoir on NENV curves 
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varying shapes of the simple three dimensional figures contribute to the variability of the 

curves, thereby making it evident that the shape of the reservoir is an influencing factor 

for the shape of NENV curves. 

Reservoir side slope 

The effect of reservoir side slope on the curves was studied by plotting the NENV 

curves for five simple three dimensional figures as shown in Figure 5-12. These curves, 

as shown in Figure 5-13, show that the curve for fig.4 is the steepest and that for a 

rectangloid is a straight line. The curves suggest that the reservoir sideslope influences 

the shape of the NENV curves. 

Spacing of contour lines 

The manner in which the contour lines are spaced depends on the distribution of 

relief in the reservoir, and the slope of the reservoir bed. To illustrate the influence of 

this factor on the NENV curve, two hypothetical reservoir shapes as shown in Figure 5- 

14 were selected. The curves for the two hypothetical reservoirs is as shown in Figure 5- 

15. As seen from the plot the curves are conspicuously different for the middle portion 

where the spacing of contour lines is different. 
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FIG. 1 

FIG. 2 

I 

I 

1 

FIG. 3 

FIG.4 

\ / 

FIG.5 

Figure 5-12: Hypothetical shapes chosen to illustrate effect of side slopes on NENV 

curves 
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h/H 

Figure 5-13: Effect of side slope on NENV curves 
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F1G.3B 

Figure 5-14. Hypothetical sectional views of shapes chosen to illustrate effect of spacing 

of contour lines on NENV curves 
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FKS.3* 

FtG.3b 

Figure 5-15: Effect of spacing of contour lines on NENV curves 



www.manaraa.com

83 

A reservoir is a complex geomorphic landform whose bed is reshaped over the 

years by sediment deposition. The manner in which the sediment is deposited will 

depend on a variety of factors which include: 

• Topography of the watershed 

• Parent material of the soils on the watershed 

• Precipitation 

• Ability of the soils to retain water 

• Vegetation 

• Depth of the reservoir 

• Reservoir trap efficiency 

• Inflow velocity of sediment laden water 

The abovementioned factors influence the amount of sedimentation and the 

distribution of sediments. The NENV curves for a reservoir thus are influenced by these 

factors; and the uniqueness of the curves for a particular reservoir can be attributed to the 

these factors also. 

5.6: Application of NENV curves 

As stated earlier, it was found out that the normalized elevation vs normalized 

volume (NENV) curves for a particular lake are time invariant. This characteristic 

property of a lake can be used to estimate the amount of sedimentation in reservoirs if 
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historic data of earlier bathymetric surveys are available. In Iowa, lakes have been 

surveyed in the past and these data are available with the Iowa Department of Natural 

Resources (IDNR). 

A computer model, based on trapezoidal rule is proposed to compute lake 

volumes, using NENV curves. For the application of this model the area of the reservoir 

and the depth at the 5 % area contour have to be known and these can be obtained 

conducting limited reservoir survey. This model was applied to the lakes under study, to 

test the its applicability. 

5.7: NENV Computer Model and terminology used 

Before proposing the NENV model and solving the algorithms, it is essential to 

understand the terminology that has been used in the model. 

• 5% lake area contour (ao): This is the area within the contour which encompasses the 

deepest 5% of the lake area. Thus if ‘A’ represents the lake surface area at any instant 

then, 

a0~0.05A 

• lake depth at 5% lake area contour (H): This is the depth of the lake measured from 

the lake water level to the 5% lake area contour. Thus ‘H’ equals the difference in the 

elevation at the lake water level and the 5% lake area contour. Thus if ‘B’ represents 

the elevation above the mean sea level at the 5% lake area contour, then ‘B+H’ will 

represent the elevation at the lake water level. 
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• AH: The value of AH is given by the expression 

A H-JL 
10 

• h; or h: This is the height measured upwards from the 5% lake area contour elevation. 

At each stage elevation the value of ‘h’ is different, and is as shown in Figure 5-16. 

Thus 

hriAH 

where ‘i’ takes values from 0 to 10. Figure 5-16 shows the sectional and plan view of a 

hypothetical reservoir, and explains the various terms used so far in this section. 

• a1; a2, ..., &>,: These are the values of the lake area at h = AH, 2AH, ..., 9AH 

respectively. 

• v*i,n 
: This is the volume enclosed between any two elevations or heights (in general 

between h; and h^. For example, the volume v*5 6 between height h5=5AH and 

h6=6AH is given by 

In general, 

5,6 
AH 

2 
[aj+ag] 

Vi- 
AH ia+a^) 
2 
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Figure 5-16i Plan and sectional view of a hypothetical reservoir 
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where i= 1, 2, 10. It should be noted that a10 = A = Area of the lake 

•v**; : This is the total volume enclosed below a particular stage. Assuming that the 

volume of the lake below the 5 % lake area contour can be approximated by a triangloid 

of height AH, we have 

A H 

2 

Then, v“5 up to height h = 5AH is given by 

ALT * 

2 o 

where i = 0, 1, 2, ..., 9 

It should be noted that at i=0, with area=ao and volume =v0* 

In general, 

vo “vo 
LH 

2 

where i=1,2, ..., 10 

Also, 

A H 

2 
* * 
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where j =0, 1, 2, 10 

• V: This is the total volume of the lake. It is also equal to v” at the lake water level, 

i.e. at 10AH. Thus, V = v10** 

It should be noted that this expression for the volume of the lake is in terms of 

unknown areas, a1; a2, which can be obtained using the NENV model. 

• x0, Xj, ..., x9: These are the ratios of v” to the total volume of the lake at stages h/H 

= 0, 0.1, ..., 0.9 respectively. The values of x0, xu ..., x9 for the lakes under study 

were obtained using SURFER, and were found out to be nearly time-invariant. To 

obtain the values for XQ, xx, ..., x9, the historic lake bathymetric maps were digitized 

and v” obtained at elevations B, B+AH, ..., B+9AH. The v”, were then normalized 

with the lake volume (V) to obtain XQ, X,, ..., x9. Thus, 

v0**@B 

*°" V@B+H 

v”@B+AH 
Xl V@B+H 

In general, 

v**@B+iAH 
Xi V@B+H 

It should be noted that the normalization was done at 5 % lake area contour and 

not the maximum depth. Thus at 5 % lake area contour, the lake had some volume and 

so v'*0 at elevation ‘B’ and thus Xo was not equal to zero. 
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A computer model (NENV model) was developed (as shown in Appendix D) to 

calculate the lake volume at any time, provided the area of the lake and the lake depth at 

the 5 % lake area contour are known. The program is based on trapezoidal rule, and the 

basic equations used for the program are as shown in Table D-4 of Appendix D. 

The following section gives the algorithm of the program. For a detailed solution 

of the algorithm refer Appendix D of the thesis. 

5.8: NENV model algorithm 

The volume of the lake is given by the expression 

A 17 9 
V-—[A+2Za] 

2 o' 

Thus to compute the volume of the lake it is necessary to solve for a,, a2, ..., a. 

In order to achieve this objective, it is necessary to express these variables in terms of 

some known values. From the aerial photographs we can obtain the value of the lake 

surface area (A). Also as ao = 0.05 A, the value of ao is also known. From historic 

bathymetric maps we know Xo, Xj, x2, ..., x9. Thus to solve for the variables it is 

necessary to express the variables in terms of known values ‘A’ and ‘ao’ and AH. One 

approach to this problem is to represent the variables in terms of ‘A’ and ‘a^. Then, a, 

can be represented in terms of the known terms: ‘A’ and ‘ao’. 
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From Table D-4, 

*9- 

a9+2'Lai 

A+2La. 
(1) 

It is possible using "dividendo", to represent the arithmetic series a0+a, + ...+ag 

in terms of A and a? (refer to Appendix D for details) 

8 

aQ+2Sa. 9 x 
*9 0 

l-x9 A+a9 

Solving for the arithmetic series ao+a! + ...+a8 we get, 

(2) 

8 x9 2X9-1 

*a<-°-5x[777A+-rraJ o 1 ^ 1 ^ 
(3) 

Now, 

7 7 8 

at+2Lai 2Eaj+ag+(ag-ag) 22^-0, 
o _ o o 

*8’ 9 8 8 

A+2Zai A+2Lai+2a9 A+2Zai+2a9 
oo o 

(4) 

By substituting (3) in (4), we get 
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x9 2x9-l 
[-2-A+- aA-a 
l-xn 1 ~xa 

8 

*»- 
A+[ 

l-xQ 
-A+- 

2x9-l 

1 -x. 
-a^+2a9 

(5) 

Solving for ag and combining the terms we get, 

-X0+2X9-1 

1 ~xa 1 ~xa 

a,] (6) 

Similarly by solving we get 

«7"[ 
-x9+lx%-Xl^ | 

l-x-9 

-x7+2xg-2x9+l 

l-x9 
a,] 

and, 

X9-2X9+2X7-X6 -x6+2x7-2xg+2x9-l 

1 -x„ 
3-A+ 

1 ~xa 

a,] 

(7) 

(8) 

Also, 

x9-2x9+2x1-2x6+2x5-2x4+2x3-2x2+2xl-x0 
a -[   A+ 

l-xa 

-x0+2xl-2x2+2x3-2x4+2x5-2x6+2x7-2xs+2x9-l 

1 ~xa 

(9) 
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Refer to Appendix D for a detailed solution of this algorithm. The equations 

given above are numbered the same in the appendix for simplicity. 

Thus we can express all areas in terms of the known scalers Xo, xt, ..., x9 and A 

and a*,. But since normalization of the elevation is done at 5 % lake area contour, 

a0-0.05A 

Thus, by substituting in (9) the values of the known scalers XQ, xt, ..., x9, A and 

ao, we can obtain the value for a9. Substituting the value of a9 in all the other equations, 

we can obtain the other height areas a8, a7, ..., a,. The lake volume can then be 

calculated using the relationship given by trapezoidal rule. 

AII 9 

V~[A+2Xat] 
2 o 

5.9: Application of the model 

The validity of a model can only be ascertained by applying the model to a real 

world problem. The NENV model was applied to the lakes under study and gave 

satisfactory results. As mentioned earlier, the application of this model to a reservoir is 

to compute the reservoir volume and thus the amount of sedimentation. Limited field 

data are required to apply the model. These include: 

• Area of the reservoir 

• Reservoir elevation at 5 % area contour 
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The area of a reservoir can be obtained by taking vertical aerial photographs of 

the reservoir watershed. The reservoir elevation at the 5% area contour interval can be 

obtained by taking lake bottom soundings at the "approximate" 5 % area contour. 

Irregularities in the depths can be disregarded, and the other soundings averaged, 

to obtain the reservoir depth at the 5 % lake area contour. It is possible to know the 

approximate location of the 5 % area contour from the basic knowledge of lake 

morphology. The 5 % lake area contour, for a river dammed lake will be towards the 

dam, for a glacial lake it will be near the center of the lake, and for an oxbow lake will 

be towards the outside of the meander loop. 

SURFER was used to compute the values for XQ, x,, ..., x9, for the three lakes 

under study. The values obtained are as shown in Tables D-l, D-2, and D-3 of 

Appendix D. These values were input in the NENV computer program, given in 

Appendix D, to compute the lake volume. 

In case of Lower Pine Lake, the data for 1922 were used to compute the lake 

volume for 1932, 1950, and 1990. The volume obtained by the NENV model was 

compared with the volume obtained using SURFER and trapezoidal rule. The results are 

as shown in Table 5-5. 

In case of Union Grove Lake the 1936 data were used to compute the lake volume 

for 1950 and 1981, and the volume obtained using the NENV model was compared with 

the volume obtained using SURFER and trapezoidal rule. The results are shown in Table 

5-6. 
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Table 5-5: Comparison of volumes: Lower Pine Lake 

  1  

Year 
Volume (acre-ft) 

Variation 
(%) 

NENV SURFER Trapezoidal 
Rule 

1932 499.14 566.35 533.13 6.38 
1950 395.76 432.05 436.8 9.4 
1990 303.7 354.68 332.85 8.76 

Table 5-6: Comparison of volumes: Union Grove Lake 

Volume (acre-ft) 
Year NENV SURFER Trapezoidal 

Rule 
Variation 

(%) 
1950 966 998.94 994.96 2.91 
1981 614.66 662.15 693.1 11.32 
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It should be noted that the highest percentage variation was obtained for the 1981 

lake volume. This is because the NENV curve for 1981 is slightly different from the 

1936 curve as seen in Figure 5-6. As mentioned earlier the slight variation between the 

two curves can be attributed to raising of the dam crest and dredging. 

In case of Black Hawk Lake the 1916 data were used to compute lake volume for 

1935, and the 1973 data were used to compute the lake volume for 1981. The 1973 data 

were used instead of the 1916 data as the lake was dredged in 1973 and exhibited a 

NENV curve which was slightly different from the 1916 curve. The volume obtained 

was then compared to the volume obtained using SURFER and trapezoidal rule. The 

results are as shown in Table 5-7. 

Table 5-7: Comparison of volumes: Black Hawk Lake 

Year NENV SURFER Trapezoidal 
Rule 

Variation 
(%) 

1935 
1981 

3022.16 
3594.14 

3349.08 
3383.22 

3300.23 
3685.17 

8.43 
2.47 
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Thus, to estimate the lake volume using the NENV model, the data obtained from 

previous bathymetric maps are used. If a lake has been dredged in the past or the dam 

crest elevation has been raised then the data obtained from bathymetric maps after the 

event give better results as seen in the case of Union Grove Lake and Black Hawk Lake. 

In case of Union Grove Lake, use of data prior to raising of the dam crest gave a larger 

variation (11.32%), whereas, in case of Black Hawk Lake, use of data obtained after 

dredging gave better results or a smaller variation (2.47%). 

It should be noted that in actual practice, the model may yield results with slightly 

greater variations. These variations may be due to errors induced in the measurements 

of: 

• Area of the lake 

When the NENV model was applied to the lakes under study, the area was obtained 

directly from the previous bathymetric maps. In actual practice, the area will have to 

be obtained by other methods such as aerial photographs, in order to avoid an 

extensive survey. 

• Depth at 5 % lake area contour 

When the NENV model was applied to the lakes under study the depth at the 5 % lake 

area was obtained based on previous bathymetric maps. In actual practice, however, 

the depth obtained may only be at the "approximate" 5 % lake area contour. 
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However, if the errors that can be induced by these two factors are recognized and 

if care is taken to minimize these errors by accurate measurements, it is possible to apply 

the NENV model to real world problems. 

Although the NENV model could be applied to lakes to calculate the lake volume 

at any instant, it is essential to have a limited field data. If, however, in future it is 

possible to estimate the rate of decrease of lake area and lake depth, then it may be 

possible to apply the NENV model to reservoirs without having to actually conduct any 

field survey. 

5.10: Studied lakes as compared to studied geometrical forms 

As is seen from Figure 5-10, the NENV curve for Black Hawk Lake is 

considerably flat as compared to the curves for the other two lakes. As lakes have 

complex bed profiles, it is not always possible to compare a lake with a geometric model. 

Black Hawk Lake could be best compared, among the geometrical shapes studied, to the 

frustum of a cone, whose frustum height to diameter ratio is very small. The NENV 

curve for such a geometrical model would be somewhat similar to the combined effect of 

the NENV curves for a cone and the NENV curve for Fig. 4 in Figure 5-12. 
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In order to compare Union Grove Lake and Lower Pine Lake to the studied 

geometrical forms the two lakes have been grouped under one category as both are river 

dammed lakes. These two lakes can be best compared among the various geometrical 

shapes studied here, with Fig. 3b of Figure 5-14, wherein the ratio of the lake depth to 

the length is very small. Also, instead of vertical sides (as assumed for Fig. 3b), the 

sides of the geometric model will be sloping, similar to Fig. 2 of Figure 5-12. The 

NENV curve for such a geometrical model would be somewhat similar to the combined 

effect of the NENV curve for Fig. 3b of Figure 5-14 and the NENV curve for Fig. 2 of 

Figure 5-12. 
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CONCLUSION 

• The purpose of this study is not a critical evaluation of the proposed literature on 

sedimentation, but to present what has been proposed by various researchers. 

However, the time independence concept and stream power theory concept have been 

evaluated using the NENV model. 

• Comparisons of the lake volumes obtained by using SURFER and modified prismoidal 

rule showed a variation of less than 10%. 

• The three lakes under study exhibit characteristic normalized elevation vs normalized 

volume curves which are time independent, thereby suggesting that the reservoir bed 

profile adjust over a period of time to the discharge of water and sediment load 

provided by the drainage basin. 

• The NENV model can be used to predict the volume of sedimentation and thus the 

sedimentation at any instant if the area of the lake and the reservoir depth at the 5 % 

area contour is known. 

• Comparison of lake volumes obtained by using NENV model and the trapezoidal rule 

showed a variation of less than 12% for the three lakes under study. 
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APPENDIX A: LAKE BATHYMETRIC MAPS 
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APPENDIX B: VOLUME-ELEVATION RELATIONSHIP 
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Table B-l: Union Grove Lake - Elevation & volume relationship, (1936) 

Elevation 
(m.s.l.) 

Depth 

(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized j 
Volume(%) 

937.6 0.0 100.00 796.62 100.00 
936.0 -1.6 90.36 598.93 75.18 
934.0 -3.6 78.31 405.84 50.95 
932.0 -5.6 66.27 256.09 32.15 
930.0 -7.6 54.22 152.67 19.16 
928.0 -9.6 42.17 82.34 10.34 
926.0 -11.6 30.12 37.78 4.74 
924.0 -13.6 18.07 14.19 1.78 
922.0 -15.6 6.02 2.67 0.34 
921.0 -16.6 0.00 0.61 0.08 
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Table B-2: Union Grove Lake - Elevation & volume relationship, (1950) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

939.6 0.0 100.00 998.94 100.00 
938.0 -1.6 90.91 774.53 77.54 
937.6 -2.0 88.64 724.98 72.57 
936.0 -3.6 79.55 548.19 54.88 
934.0 -5.6 68.18 369.05 36.94 
932.0 -7.6 56.82 230.29 23.05 
930.0 -9.6 45.45 130.58 13.07 
928.0 -11.6 34.09 63.63 6.37 
926.0 -13.6 22.73 24.78 2.48 
924.0 -15.6 11.36 5.52 0.55 
922.0 -17.6 0.00 0.29 0.03 



www.manaraa.com

122 

Table B-3: Union Grove Lake - Elevation & volume relationship, (1970) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

939.6 0.0 100.00 836.12 100.00 
937.6 -2.0 87.18 598.91 71.63 
936.0 -3.6 76.92 459.95 55.01 
934.0 -5.6 64.10 310.37 37.12 
932.0 -7.6 51.28 205.77 24.61 
930.0 -9.6 38.46 118.23 14.14 
928.0 -11.6 25.64 60.28 7.21 
926.0 -13.6 12.82 24.75 2.96 
924.0 -15.6 0.00 0.18 0.02 
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Table B-4: Union Grove Lake - Elevation & volume relationship, (1981) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

937.6 0.0 100.00 662.15 100.00 
936.0 -1.6 88.24 495.90 74.89 
934.0 -3.6 73.53 331.26 50.03 
932.0 -5.6 58.82 201.65 30.45 
930.0 -7.6 44.12 108.19 16.34 
928.0 -9.6 29.41 47.43 7.16 
926.0 -11.6 14.71 11.75 1.77 
924.0 -13.6 0.00 0.17 0.03 
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Table B-5: Lower Pine Lake - Elevation & volume relationship, (1922) 

Elevation 
(ft) 

Depth 
(ft) 

Normalised 
Elevation 

Volume 
(acre-ft) 

Normalised 
Volume 

970.5 0 100.00 680.90 100.00 
969 -1.5 90.32 526.17 77.28 
967 -3.5 77.42 390.04 57.28 
965 -5.5 64.52 272.04 39.95 
963 -7.5 51.61 173.97 25.55 
961 -9.5 38.71 95.53 14.03 
959 -11.5 25.81 44.62 6.55 
958 -12.5 19.35 27.86 4.09 
957 -13.5 12.90 15.83 2.32 
956 -14.5 6.45 7.26 1.07 
955 -15.5 0.00 1.82 0.27 
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Table B-6: Lower Pine Lake - Elevation & volume relationship, (1932) 

Elevation 
(m.s.l.) 

Depth 

_(ft) 

Normalized 
Depth(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

971 0.00 0.00 586.35 100.00 
969 -2.00 -14.29 411.16 70.12 
967 -4.00 -28.57 285.81 48.74 
965 -6.00 -42.86 184.83 31.52 
963 -8.00 -57.14 112.00 19.10 
961 -10.00 -71.43 60.26 10.28 
959 -12.00 -85.71 29.51 5.03 
958 -13.00 -92.86 20.11 3.43 

i 957 -14.00 -100.00 13.83 2.36 
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Table B-7: Lower Pine Lake - Elevation & volume relationship, (1950) 

Elevation 
(ft) 

Depth 
(ft) 

Normalized 
Elevation (%) 

Volume 
(acre-ft) 

Normalized 
Volume (%) 

971 0 100.00 516.52 100.00 
969 -2 83.33 353.54 68.45 
967 -4 66.67 223.60 43.29 
965 -6 50.00 126.01 24.40 
963 -8 33.33 58.08 11.24 
962 -9 25.00 37.95 7.35 
961 -10 16.67 23.42 4.53 
960 -11 8.33 12.17 2.36 
959 -12 0.00 4.59 0.89 
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Table B-8: Lower Pine Lake - Elevation & volume relationship, (1990) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation (%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

970.5 0.0 100.0 354.68 100.00 
969.5 -1.0 90.0 286.27 80.71 
968.5 -2.0 80.0 226.88 63.97 
967.5 -3.0 70.0 175.32 49.43 
966.5 -4.0 60.0 130.88 36.90 
965.5 -5.0 50.0 92.58 26.10 
964.5 -6.0 40.0 60.47 17.05 
963.5 -7.0 30.0 35.49 10.01 
962.5 -8.0 20.0 18.69 5.27 
961.5 -9.0 10.0 7.74 2.18 
960.5 -10.0 0.0 1.47 0.41 i 
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Table B-9: Black Hawk Lake - Elevation & volume relationship, (1916) 

Elevation 
(m.s.l.) 

Depth 

(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

1220.5 0.0 100.00 3994.01 100.00 
1220.0 -0.5 90.91 3333.76 83.47 
1219.0 -1.5 72.73 2577.65 64.54 
1218.0 -2.5 54.55 1890.87 47.34 
1217.0 -3.5 36.36 1272.81 31.87 
1216.0 -4.5 18.18 730.42 18.29 
1215.0 -5.5 0.00 310.46 7.77 
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Table B-10: Black Hawk Lake - Elevation & volume relationship, (1935) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

1220.5 0.0 100.00 3349.08 100.00 
1219.0 -1.5 75.00 1898.05 56.67 
1218.0 -2.5 58.33 1297.63 38.75 
1217.0 -3.5 41.67 784.90 23.44 
1216.0 -4.5 25.00 372.93 11.14 
1215.0 -5.5 8.33 87.63 2.62 
1214.5 -6.0 0.00 18.94 0.57 
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Table B-ll: Black Hawk Lake - Elevation & volume relationship, (1973) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

1220.5 0.0 100.00 3813.25 100.00 
1220.0 -0.5 92.31 3198.94 83.89 
1219.0 -1.5 76.92 2490.43 65.31 
1218.0 -2.5 61.54 1842.56 48.32 
1217.0 -3.5 46.15 1253.03 32.86 
1216.0 -4.5 30.77 736.72 19.32 
1215.0 -5.5 15.38 339.00 8.89 
1214.0 -6.5 0.00 73.98 1.94 
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Table B-12: Black Hawk Lake - Elevation & volume relationship, (1981) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Volume 
(acre-ft) 

Normalized 
Volume(%) 

1220.5 0.0 100.00 3383.22 100.00 
1220.0 -0.5 90.91 2874.38 84.96 
1219.0 -1.5 72.73 2238.00 66.15 
1218.0 -2.5 54.55 1675.03 49.51 
1217.0 -3.5 36.36 1153.68 34.10 
1216.0 -4.5 18.18 665.48 19.67 
1215.0 -5.5 0.00 243.25 7.19 
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APPENDIX C: AREA-ELEVATION RELATIONSHIP 
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Table C-l: Union Grove Lake - Elevation & area relationship, (1936) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

937.60 0.00 100.00 118.04 100.00 
936.00 -1.60 90.91 105.40 89.29 
934.00 -3.60 79.55 87.67 74.27 
932.00 -5.60 68.18 67.44 57.13 
930.00 -7.60 56.82 45.76 38.77 
928.00 -9.60 45.45 32.28 27.35 
926.00 -11.60 34.09 20.24 17.15 
924.00 -13.60 22.73 10.82 9.17 
922.00 -15.60 11.36 5.90 5.00 
920.00 -17.60 0.00 1.51 1.28 
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Table C-2: Union Grove Lake - Elevation & area relationship, (1950) 

Elevation 
(m.s.l.) 

Depth 
__ (ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

939.6 0.0 100.00 129.55 100.00 
937.6 -2.0 88.64 105.30 81.28 
934.0 -5.6 68.18 84.81 65.47 
932.0 -7.6 56.82 62.41 48.17 
930.0 -9.6 45.45 46.71 36.06 
928.0 -11.6 34.09 31.16 24.05 
926.0 -13.6 22.73 17.63 13.61 
924.0 -15.6 11.36 8.19 6.32 
922.0 -17.6 0.00 1.75 1.35 
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Table C-3: Union Grove Lake - Elevation & area relationship, (1970) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

939.6 0.0 100.00 116.85 100.00 
937.6 -2.0 88.64 101.21 86.62 
934.0 -5.6 68.18 81.46 69.71 
932.0 -7.6 56.82 61.01 52.21 
930.0 -9.6 45.45 45.54 38.97 
928.0 -11.6 34.09 30.68 26.26 
926.0 -13.6 22.73 17.05 14.59 
924.0 -15.6 11.36 7.85 6.72 
922.0 -17.6 0.00 0.98 0.84 
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Table C-4: Union Grove Lake - Elevation & area relationship, (1981) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

939.6 0.0 100.00 106.62 100.00 
938.0 -1.6 88.24 94.39 88.53 
936.0 -3.6 73.53 79.76 74.81 
934.0 -5.6 58.82 59.99 56.27 
932.0 -7.6 44.12 38.14 35.77 
930.0 -9.6 29.41 24.83 23.29 
928.0 -11.6 14.71 12.12 11.37 
926.0 -13.6 0.00 2.38 2.23 
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Table C-5: Lower Pine Lake - Elevation & area relationship, (1922) 

Elevation 
(ft) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

971 0 100.00 69.63 100.00 
965 -6 62.50 56.22 80.74 
962 -9 43.75 41.01 58.89 
960 -11 31.25 29.56 42.46 
958 -13 18.75 20.47 29.40 
955 -16 0.00 5.95 8.55 
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Table C-6: Lower Pine Lake - Elevation & area relationship, (1932) 

Elevation 
(ra.s.l.) 

Depth 
(ft) 

Normalized 
Elevation (%) 

Area 
(acre) 

Normalized 
Area (%) 

971.4 0.00 100.00 68.44 100.00 
970 -1.40 90.28 60.92 89.01 
968 -3.40 76.39 54.36 79.43 
965 -6.40 55.56 44.24 64.65 
962 -9.40 34.72 30.09 43.96 
960 -11.40 20.83 21.61 31.57 
958 -13.40 6.94 12.34 18.03 
957 -14.40 0.00 3.90 5.70 



www.manaraa.com

139 

Table C-7: Lower Pine Lake - Elevation & area relationship, (1950) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

970.5 0 100.00 63.27 100.00 
970 -0.5 95.65 59.25 93.64 
967 -3.5 69.57 49.05 77.53 
965 -5.5 52.17 38.52 60.88 
963 -7.5 34.78 27.19 42.97 
961 -9.5 17.39 14.43 22.80 
960 -10.5 8.70 10.00 15.81 
959 -11.5 0.00 1.94 3.06 



www.manaraa.com

140 

Table C-8: Lower Pine Lake - Elevation & area relationship, (1990) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation (% 

Area 
(acre) 

Normalized 
Area(%) 

970.5 0.0 100.0 63.50 100.00 
969 -1.5 84.2 51.78 81.54 
964 -6.5 31.6 28.43 44.77 
963 -7.5 21.1 19.95 31.42 
962 -8.5 10.5 13.73 21.62 
961 -9.5 0.0 2.85 4.49 
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Table C-9: Black Hawk Lake - Elevation & area relationship, (1916) 

Elevation 
(m.s.l.) 

Depth 

(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

1220.5 0.0 100.00 799.26 100.00 
1219.0 -1.5 76.92 698.31 87.37 
1217.0 -3.5 46.15 566.36 70.86 
1215.0 -5.5 15.38 250.73 31.37 
1214.5 -6.0 7.69 89.28 11.17 
1214.0 -6.5 0.00 14.23 1.78 
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Table C-10: Black Hawk Lake - Elevation & area relationship, (1935) 

Elevation 
(m.s.l.) 

Depth 

(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

1220.5 0.0 100.00 791.12 100.00 
1219.0 -1.5 77.94 728.44 92.08 
1218.0 -2.5 63.24 668.80 84.54 
1217.0 -3.5 48.53 605.36 76.52 
1216.0 -4.5 33.82 478.64 60.50 
1215.5 -5.0 26.47 321.68 40.66 
1215.0 -5.5 19.12 178.08 22.51 
1214.7 -5.8 14.71 111.24 14.06 
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Table C-ll: Black Hawk Lake - Elevation & area relationship, (1973) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

1220.5 0.0 100.00 770.83 100.00 
1218.0 -2.5 70.59 688.84 89.36 
1216.0 -4.5 47.06 520.68 67.55 
1214.0 -6.5 23.53 235.92 30.61 
1212.0 -8.5 0.00 12.60 1.63 
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Table C-12: Black Hawk Lake - Elevation & area relationship, (1981) 

Elevation 
(m.s.l.) 

Depth 
(ft) 

Normalized 
Elevation(%) 

Area 
(acre) 

Normalized 
Area(%) 

1220.5 0.0 100.00 763.40 100.00 
1220.0 -0.5 94.12 751.12 98.39 
1218.0 -2.5 70.59 662.99 86.85 
1216.0 -4.5 47.06 508.12 66.56 
1212.0 -8.5 0.00 14.51 1.90 
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APPENDIX D 
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Table D-l: Normalized elevation and normalized volume values for Lower Pine Lake 

1922 1932 1950 1990 
h/H v/V v/V v/V v/V 

0.0 0.002667 0.024415 0.009122 0.004100 
0.1 0.017711 0.041401 0.027413 0.021800 
0.2 0.045325 0.070130 0.055736 0.052700 
0.3 0.090346 0.113721 0.094883 0.100100 
0.4 0.155522 0.176438 0.158186 0.170500 
0.5 0.255498 0.256957 0.244430 0.261000 
0.6 0.368508 0.358543 0.349913 0.369000 
0.7 0.499875 0.484724 0.479335 0.494300 
0.8 0.649626 0.631609 0.630487 0.639700 
0.9 0.815659 0.801287 0.803473 0.807100 
1.0 1.000000 1.000000 1.000000 1.000000 
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Table D-2: Normalized elevation and normalized volume values for Union Grove Lake 

1936 1981 
h/H v/V v/V 

0.0 0.002581 0.000260 
0.1 0.012028 0.009922 
0.2 0.029524 0.033452 
0.3 0.058813 0.074460 
0.4 0.106682 0.132594 
0.5 0.175843 0.214499 
0.6 0.268876 0.318250 
0.7 0.395747 0.448431 
0.8 0.563209 0.602994 
0.9 0.760523 0.783120 
1.0 1.000000 1.000000 
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Table D-3: Normalized elevation and normalized volume values for Black Hawk Lake 

1916 1935 1973 
h/H v/V v/V v/V 

0.0 0.011874 0.010236 0.001932 
0.1 0.045293 0.050052 0.004530 
0.2 0.108162 0.112118 0.010994 
0.3 0.174994 0.189321 0.054338 
0.4 0.263956 0.276971 0.131377 
0.5 0.362612 0.373205 0.234736 
0.6 0.470090 0.477696 0.358852 
0.7 0.586172 0.590746 0.498247 
0.8 0.711628 0.713221 0.651046 
0.9 0.848274 0.847730 0.817404 
1.0 1.000000 1.000000 1.000000 
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Table D-4: Equations used for NENV model 

h/H 

0 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

v*yv 

*0 

X| 

*2 

*3 

*4 

*7 

*« 

VM-1 
wm 

V i 

A// —-aQ(assumed) A# 

—a* 

2 o 

HH, s 

2 o 

A H. . —{asaj 2 o 

^Y^at*a*> 
M(a5-2Ea,) 
2 o 

A/T ‘>T„\ —- (a,*2Ia; 
2 o 

M(V2Ia,) 

M(o,*2Ea; 

-^V<s) 
±H(A+lia) 

2 o 
1.0 1.0 
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COMPUTER PROGRAM PRINTOUT 

integer i 
real x(0:20),a(0:20),aa,h,sum 
real term,suml 
real deltah 

print*, 'input value A' 
read(*,*) aa 

c aa - 68.44 

print*,'input value of a(0)' 
read(*, *) a(0) 

c a(0) - 0.05*aa 
sum » 0. 
suml « 0. 

print*, 'input value H' 
read(*,*) h 

c h - 14.4 

deltah - h*0.1 

do i « 0,9 
print*, 'Input the value of x',i 
read(*,*) x(i) 

enddo 

c x<0) « 0.0041 
c x(l) m 0.0218 
c x<2) m 0.0527 
c x (3) m 0.1001 
c x (4) 0.1705 
c x<5) ■ 0.2610 
c x (6) m 0.3690 
c x (7) m 0.4943 
c x (8) m 0.6397 
c x (9) - 0.8071 

sum ■ x (9) -x (0) 
do i ■ 8,1, -1 

sum «■ sum - ((-1)**i)*2.*x(i) 
enddo 
suml • sum 
suml _ suml + x(9) -1 

sum ™ sum*aa/(1.-x(9)) 
sum - (a(0)-sum)*(1.-x(9)) 
a (9) ■ sum/suml 
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do i “ 1,8 
sum “ 0. 
suml * 0. 
do j * 8,i+l,-l 

sum • sum - ((-1) **(i+j))*2.*x(j) 
enddo 
suml ” sum 
sum » sum + ((-1)**i)*x(9) - x(i) 
suml - suml + ((-l)**i)* (2.*x(9)-l. 
term - (1. - x (9)) 

sum * sum*aa/term 
suml ■ suml*a(9)/term 
a(i) * sum + suml 

enddo 

print*, 'Outputting values of a' 
sum ■ 0. 
do i - 0,9 
print*,i,a(i) 
sum » sum + a(i) 
enddo 

vol - deltah*(aa+2.*sum-a(0))/2. 
print*, 'volume • ', vol 

stop 
end 

- x(i) 
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NENV Algorithm 

As mentioned earlier in Chapter 5 of the thesis to compute the volume of the lake it 

is necessary to solve for al7 a2, a^ In order to achieve this objective, it is necessary to 

express these variables in terms of some known values. 

From Table D-4, 

*9- 

a9+2Ha. 

A+lZa, 

(1) 

It is possible using "dividendo", to represent the arithmetic series a0+a! + ... +a8 in 

terms of A and a. 

According to "dividendo" if; 

~b'~d 

then, 

a c 
b-a d-c 

(A) 
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Verification of "dividendo" 

Cross-multiplying the terms in (A) we get, 

a(d-c)-c(b-a) 

Expanding we get, 

ad-ac-bc-ac 

Cancelling the common term ‘ac’ we get, 

ad-be 

or, 

a_£ 
b~ d 

Thus by "divendo" 

a9+2Hat 

1 ~X ® 8 

o o 

Thus, 

a9+2Sai 

l-x9 A+a9 

(2) 
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Multiplying both sides of equation by (A+89) we get, 

—-^-(A+a9)-a9+22a. 
1 XQ 0 

Combining the terms for A and a* we get, 

2Ear[(-^-)A+(-^— l)aj 
0 l~X9 1 ~Xg 

Solving for the arithmetic series ao+ai + ...+ag we get, 

8 x9 2X9- 1 
2ar0.5 x[—*—A+—9— aj 
0 ‘ 1-x, l-x0 * 

(3) 

Now from Table D-4, 

at+2'Eai 
0 

J4+22<Z- 

By adding and substracting a8 in the numerator, and expanding the denominator we get, 

V 

7 8 

22aj+a8+(a8-ag) 2Eara, 
0 0 
8 8 

A^2Ha^2a9 A^2La^2a9 
0 0 
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Thus 

og+2Eo( 22oj.+ag+(og-ag) 2Saj-a8 

9 8 g 

.<4+220,. ^4+2Ea+2o9 A+2Ea.+2o9 
oo o 

(4) 

By substituting (3) in (4), we get 

*s’ 

x9 2x„-l 

xQ 1x9-1 
A+[——A+ aj+2O9 

l-x9 l-x9 

(5) 

Consider the denominator (D) of (5); 

x9 2X9-1 
D-A+2o9+(—9-)A )«9 

l-x9 l-x9 

Combining terms for A and a, we get, 

JMl+(-r
?-)M+[2+ 

1-x, 

(2yl) 
l-xn v9 * 9 

Taking least common denominator (L.C.D.) of both the terms we get, 

l-x9 l-x9 

D——(A+aJ 
l-xa * 

Therefore, 
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But, 

9 

D-A+2'Zai 
o 

Thus, 

A+2'La,-- 
1-*, 

(A+a^ (B) 

Substituting (B) in (5) we get, 

(—-M+(- 
1-ot- 

2x9-l 

1 -xc 

-)a9-at 

xt- 
i-r-XA+aJ 

1 ~xa 

Cross-multiplying we get, 

at- x9 2x9-l 

l-X, 1-at- l-ato 

Solving for ag and combining the terms we get, 

oc0-ac- -ac,+2ac0-l 9 *i4+_L—?_a9] 
l-ac0 1 ~xa 
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Thus we have represented ag in terms of A and a$. Next, we will represent a7 in terms of 

A and a^ 

From Table D-4 we have, 

*7‘ 

6 

a1+2'Lai 
o 
9 

A+2Eai 
o 

Thus, 

*7- 

a1+2'Lai-2at-2a1 -a1+2Eai-2at 
o o 

A+2Ha.. 
9 

A+2'Za, 

(C) 

Substituting (3), (6), and (B) in (C) we get, 

2X9- 1 x9~x8w /
2*9-*8-

1 

-a7+[(-^M+(-r^)«9]-2[(-^M+( 
1 -Jc. 1 -X, l-x„ l-Xa 

)<g 

X7“‘ 

l-xQ 

By cross-multiplying and expanding we get, 

1 -xr 

x9 2xg-l 
(A+a9)--a7+(— )a9

+( 
1-x, l-xa 

-2,„.2X,MK^V2K 

1 ~Xa 1 —xa 
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Combining the terms for A and a, and solving for a7 we get, 

 r •*'9+2X8 X1 i, X7+^*8 
dt7” L t A+ ^ <Ij] 

l-x-9 1-Xn 

(7) 

Thus we have represented a7 in terms of A and a? 

By following the procedure similar to the one outlined above we can represent a7, a6, ..., ao, 

in terms of A and a$ 

For example, 

x9 2X8+2X7 X6 X^+1X2 2X8+2X9 1 
a6~i : A+ : a9J 

1 ~Xn 1“X- 
(8) 

and 

x9-2xi+2x7-2x6+2x5-2x4+2xi-2x2+2xl-xQ 

«o“[ : A+ l-xa 

-x0+2xj-2X2+2JC3-2JC4+2JC5-2X6+2X7-2X8+2X9-1 

1 ~xa 

(9) 
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